Synthesis of Anion-Deficient Layered Perovskites, $ACa_2Nb_{3-x}M_xO_{10-x}$ (A = Rb, Cs; M = Al, Fe), Exhibiting **Ion-Exchange and Intercalation. Evidence for the Formation of Layered Brownmillerites, ACa₂Nb₂AlO₉** $(A = Cs, H)^{\ddagger}$

S. Uma and J. Gopalakrishnan*

Solid State and Structural Chemistry Unit, Indian Institute *of* Science, Bangalore 560 *012,* India

Received November *12, 1993.* Revised Manuscript Received April 19, 1994"

Anion-deficient layered perovskite oxides of the formula, $ACa_2Nb_{3-x}M_xO_{10-x}$ (A = Rb, Cs; M $=$ Al, Fe) for $0 < x \le 1.0$, possessing tetragonal structures similar to the parent $ACa_2Nb_3O_{10}$, have been synthesized. The interlayer A cations in these materials are readily exchanged with protons in aqueous HNO_3 to give the protonated derivatives, $HCa_2Nb_{3-x}M_xO_{10-x}$; the latter are solid Bronsted acids intercalating a number of organic amines including aniline $(pK_a = 4.63)$. The distribution of acid sites in the interlayer region of $HCa_2Nb_2MO_9$ inferred from n-alkylamine intercalation suggests that oxygen vacancies and Nb/M atoms are disordered in the $ACa_2Nb_2 MO₉$ samples prepared at 1100-1200 °C. Annealing a disordered sample of $CsCa₂Nb₂AlO₉$ for a long time at lower temperatures tends to order the Nb/Al atoms and oxygen vacancies to produce octahedral (NbO_{6/2})-tetrahedral (AlO_{4/2})-octahedral (NbO_{6/2}) layer sequence reminiscent of the brownmillerite structure.

Introduction

A variety of oxide materials of current interest are derived from the perovskite $(CaTiO₃)$ structure.¹ For instance, the superconducting bismuthates,² $(K, Ba)BiO₃$ and Ba(Pb,Bi)O₃, the superconducting cuprates,^{2,3} La_{2-x}- A_xCuO_4 (A = Sr, Ba, Na, etc.) and YBa₂Cu₃O₇, the ferromagnetic⁴ SrRuO₃ and La_{1-x}Sr_xCoO₃, and the ferroelectric⁴ BaTiO₃ and $Bi₄Ti₃O₁₂$ are all perovskite-related materials. Besides the large number of stoichiometric $(ABO₃)$ perovskites,^{4a} several oxide materials that could be regarded as derivatives of the perovskite structure are known.^{5,6} These perovskite derivatives may be grouped into two categories. The first category comprises nonstoichiometric compositions such as ABO_{3-x} , where the point defects are ordered in a specific manner to produce perovskite supersturcutres. Typical examples of this category would be the brownmillerite (Ca_2FeAlO_5) and the $YBa₂Cu₃O₇$ structures. In the brownmillerite struc-

t Contribution No. **1024** from the Solid **State** and Structural Chemistry Unit.

e Abstract published in Advance ACS Abstracts, June **15, 1994. (1)** (a) Hazen, R. M. Sci. Am. **1988,258 (6), 52.** (b) Tilley, R. J. D. Endeauour, Newseries **1990, 14, 124.** (c) Rao, C. N. R. Ferroelectrics **1990,102, 297.**

(2) Sleight, A. W. Science **1988, 242, 1519.**

ture? oxygen vacancies are ordered along **[1101** of the cubic perovskite structure resulting in alternate sheets of $\text{FeO}_{6/2}$ octahedra (O) and $AlO_{4/2}$ tetrahedra (T) in the c direction. YBa₂Cu₃O₇ represents a unique oxygen-vacancy ordering in the perovskite structure,^{2,3} where sheets of CuO_{5/2} square-pyramids sandwich $CuO_{4/2}$ chains; the A-site atoms (yttrium and barium) are ordered as well in this structure. The second category of perovskite-derivative structures is represented by the Ruddlesden-Popper phases⁸ and the Aurivillius phases.⁹ These materials contain twodimensional perovskite slabs of composition, $[A_{n-1}B_nO_{3n+1}]$, **as** one of the units building the layered structure. The perovskite slab8 may be regarded **as** formed by slicing the three-dimensional perovskite structure along one of the cubic directions, the thickness **of** each slab being determined by the number (n) of $BO₆$ octahedra in the direction perpendicular to the slab. A series of layered oxides of the formula, $A'[A_{n-1}B_nO_{3n+1}]$ ($A' = K$, Rb, Cs) discovered by Dion et al.¹⁰ and extended by Jacobson et al.¹¹ and others12 **also** contain such perovskite slabs. This series, of which $CsCa₂Nb₃O₁₀$ is a typical $n = 3$ member, has attracted considerable attention¹³ in recent times in view

(7) Colville, **A.** A.; Geller, S. Acta Crystallogr. Sect. *B* **1971,27,2311.** *(8)* Ruddlesden, **S.** N.; Popper, P. Acta Crystallogr. **1957,** *10,* **538; 1968, 11, 54.**

^{*} To whom correspondence should be addressed.

⁽³⁾ Cava, R. J. Science **1990,247, 656. (4)** (a) Goodenough, **J.** B.; Longo, J. M. Landolt-BBrnstein Numerical **DataandFunctionalRelationshipa** in Science andTechnobgy, New Series, Group III; Hellwege, K. H., Ed.; Springer-Verlag: Berlin, 1970; Vol. 4a.
(b) Eom, C. B.; Cava, R. J.; Fleming, R. M.; Phillips, J. M.; Van Dover,
R. B.; Marshall, J. H.; Hsu, J. W. P.; Krajewski, J. J.; Peck, W. F. *Scien* **1992,258, 1766.** (c) Ramesh, R.; Inam. A.; Chan, W. K.; Wilkens, B.; Myers, K.; Remschnig, K.; Hart, D. L.; Tarascon, J. M. Science **1991,252, 944.**

⁽⁵⁾ Tilley, R. J. D. In Chemical Physics of Solids and Their Surfaces; Vol. 8 Roberts, M. W., Thomas, J. M., Eds.; The Chemical Society: London, **1980;** Vol. **8.**

^{(6) (}a)Rao,C.N.R.;Gopalakrishnan, J.;Vidyasagar,K.ZndhnJ. Chem. **1984,23A, 265.** (b) Anderson, M. T.; Vaughey, J. T.; Poeppelmeier, K. R. Chem. Mater. **1993,5, 151.**

⁽⁹⁾ Aurivillius, B. Ark. Kemi **1949,** 1, **463; 499; 1960, 2, 519.**

⁽¹⁰⁾ (a) Dion, M.; Ganne, M.; Tournoux, M. Mater. *Res.* Bull. **1981, 16,1429. (b)** Dion, M.; Ganne, M.; Tournoux, M.; Ravez, J. Reu. Chim. Miner. **1986,23, 61.**

⁽¹¹⁾ Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. Inorg. Chem. **1985,24, 3727.**

^{(12) (}a) Gopalakrishnan, J.; Bhat, V.; Raveau, B. Mater. Res. Bull. 1987, 22, 413. (b) Subramanian, M. A.; Gopalakrishnan, J.; Sleight, A. W. Mater. Res. Bull. 1988, 23, 837. (c) Mohan Ram, R. A.; Clearfield, A. J. Solid

J. Solid State Chem. 1391, 34, 45.
(13) (a) Jacobson, A. J.; Lewandowski, J. T.; Johnson, J. W. J. Less-
Common Met. 1986, 116, 137. (b) Jacobson, A. J.; Johnson, J. W.;
Lewandowski, J. T. Mater. Res. Bull. 1987, 22, 45. (J.; Uma, S.; Bhat, V. Chem. Mater. **1993,5, 132.** (d) Uma, **S.;** Raju, A. R.; Gopalakrishnan, J. *J.* Mater. Chem. **1993, 3, 709.**

of the possibility to carry out interesting interlayer chemistry between the perovskite slabs. Members of this series also exhibit visible light induced photocatalytic activity for hydrogen evolution reaction.¹⁴

We envisaged that it would be possible to create anion vacancies in the $[A_{n-1}B_nO_{3n+1}]$ perovskite slabs of the latter series by suitable chemical substitution and, if the vacancies were ordered to give rise to definite coordination polyhedra around B atoms, we would have made new anionvacancy ordered layered perovskites. La₂ACu₂O₆ (A = Ca, Sr)¹⁵ and LaSr₃Fe_{3-x}Al_xO₉¹⁶ are two examples of such materials, derived respectively from the $n = 2$ and $n = 3$ members of the Ruddlesden-Popper series. To realize this possibility with the Dion-Jacobson series^{10,11} of layered perovskites, we chose the oxides $ACa_2Nb_3O_{10}$ (A = Rb, Cs) and sought to replace $Nb(V)$ by $Al(III)/Fe(III)$, which would give the series $ACa_2Nb_{3-x}M_xO_{10-x}$ ($M = Al$, Fe). We could prepare such materials for the composition range 0
 $\lt x \le 1.0$, for which the parent structure is retained at the grees lavel. The Al/Fe substituted meterial could prepare such materials for the composition range 0 $\leq x \leq 1.0$, for which the parent structure is retained at the gross level. The Al/Fe-substituted materials exhibit ion exchange and intercalation behavior similar to that of the parent $ACa_2Nb_3O_{10}$. Our results, which are reported in this paper, suggest that, while the anion vacancies are not ordered in the as-prepared samples of $ACa_2Nb_{3-x}M_xO_{10-x}$, ordering seems to occur in long-annealed samples of Acaz- $Nb₂AlO₉$ giving rise to octahedral $NbO_{6/2}$)-tetrahedral $(AlO_{4/2})$ -octahedral $(NbO_{6/2})$ layer sequence. Accordingly, ordered ACazNbzA109 could be regarded as layered analogs of the brownmillerite structure.

While $\text{LaSr}_3\text{Fe}_{3-r}\text{Al}_r\text{O}_9^{16}$ could be regarded as an anionvacancy ordered derivative of the $n = 3$ Ruddlesden-Popper phase, $A_4B_3O_{10}$, CsCa₂Nb₃O₁₀,¹⁰ may be thought of as an A-site-deficient derivative of $A_4B_3O_{10}$. CsCa₂-NbzA109 reported here represents a new derivative of $A_4B_3O_{10}$ where both ordered A-site vacancies as well as anion vacancies are present.

Experimental Section

Formation of $ACa_2Nb_{3-x}M_xO_{10-x}$ for $A = K$, Rb, Cs and M = A1 or Fe was investigated by reacting appropriate quantities of A_2CO_3 , $CaCO_3$, Nb_2O_5 , and M_2O_3 at 1150 °C for 2 days with one grinding in between. Excess (\sim 25 mol %) of A₂CO₃ was added to compensate for the loss due to volatilization. The products were washed with distilled water and dried in air at 100 "C. Protonated derivatives, $HCa_2Nb_{3-x}M_xO_{10-x}$ for $0 < x \le 1.0$, were prepared from the rubidium/cesium compounds by ion-exchange in aqueous 6 N HNO₃ at 60 °C. The exchange was found to be complete in 3 days. Intercalation of various amines in HCaz- $Nb_{3-x}M_xO_{10-x}$ was investigated by refluxing the protonated solids with a 10% solution of the amine in *n*-heptane for several days. Aniline intercalated into HCa₂Nb₂AlO₉ was polymerized by treating the aniline intercalate with **an** aqueous (0.4 M) solution of $(NH_4)_2S_2O_8$.

27Al NMR spectra of CsCazNbzAlOg samples were recorded with a Bruker MSL-300 spectrometer operating at 78.21 MHz. A cylindrical rotor, with a spinning rate of 3-4 kHz was used to record the spectra. Chemical shift values are expressed relative to $Al(H₂O)₆³⁺$. Other experimental procedures for the charac-

Figure 1. X-ray powder diffraction patterns of (a) CsCa₂Nb_{2.5}- $\text{Al}_{0.5}\text{O}_{9.5}$, (b) CsCa₂Nb₂AlO₉, (c) CsCa₂Nb_{2.5}Fe_{0.5}O_{9.5}, (d) CsCa₂- $Nb₂FeO₉$, and (e) $KCa₂Nb₂FeO₉$.

terization of the solid oxides and their intercalates were the same as reported earlier.^{13c,d}

Results and Discussion

We investigated the substitution of $\text{Al}^{\text{III}}/\text{Fe}^{\text{III}}$ for Nb^{V} in $ACa_2Nb_3O_{10}$ (A = K, Rb, Cs) by reacting the alkali metal carbonates with the component oxides at 1100-1200 "C. Single-phase materials corresponding to the composition $ACa_2Nb_{3-x}M_xO_{10-x}$ were readily obtained for $A = Rb$ and Cs in the range $0 < x \le 1.0$. Energy-dispersive X-ray emission (EDX) analysis of the $x = 1$ members $CsCa₂$ - $Nb₂MO₉$ (M = Al, Fe), showed that the Cs:Ca:Nb:M ratio was 1:2:2:1 (within the experimental error) **as** expected for the formula. For example, the percentages of Cs, Ca, Nb and Al atoms in $CsCa₂Nb₂AlO₉$ were 14.5(7), 34.0(6), 34.4(3), and 17.0(5), respectively, while the corresponding calculated percentages are 16.67,33.33,33.33, and 16.67, respectively. Powder X-ray diffraction patterns (Figure 1) revealed that the phases possessed tetragonalstructures similar to the parent $ACa_2Nb_3O_{10}$ (A = Rb, Cs).^{10,13a} In Table 1, we give an indexing of the powder diffraction data for $CsCa₂Nb₂MO₉$ and, in Table 2, the lattice parameters of all the members of the series synthesized. The results show that it is indeed possible to substitute Al(III)/Fe(III) for Nb(V) in $ACa_2Nb_3O_{10}$ (A = Rb, Cs) retaining the layered perovskite structure of the parents. Interestingly, a similar substitution in $KCa₂Nb₃O₁₀$ did not occur; for instance, $\text{KCa}_2\text{Nb}_2\text{FeO}_9$ prepared by similar means adopted a cubic perovskite structure with *a* = 3.932- **(4)** A (Figure le), instead of a layered structure.

It is known^{11,13a} that layered $ACa_2Nb_3O_{10}$ readily exchange the interlayer A cations for protons in aqueous acids to give the corresponding protonated derivative,

⁽¹⁴⁾ (a) Domen, K.; Yoshimura, J.; Sekine, T.; Tanaka, A.; Onishi, T. *Cutul.Lett.* **1990,4,339.** (b) Yoshimura, J.; Ebina,Y.; Kondo, J.; Domen, K.; Tanaka, A. J. *Phys.* Chem. **1993,97,1970.**

^{(15) (}a) Nguyen, N.; Er-rakho, L.; Michel, C.; Choisnet, J.; Raveau, B.
Mater. Res. Bull. 1980, 15, 891. (b) Caignaert, V.; Nguyen, N.; Raveau, B. *Mater. Res. Bull.* 1990, 25, 199. (c) Cava, R. J.; Batlogg, B.; Van Dove R. B.; Krajewaki, J. J.; Waszczak, J. V.; Fleming, R. M.; Peck Jr, W. F.; Rupp Jr, L. W.; Marsh, P.; James, A.C.W.P.; Schneemeyer, L. F. *Nature* **1990,345, 602.**

Jorgenson, J. D. J. *Solid State Chem.* **1993,** *103,* **1. (16)** Lee, J. Y.; Swinnea, J. S.; Steinfink, H.; Reiff, W. M.; Pei, S.;

Table 1. X-ray Powder Diffraction Data for CsCa₂Nb₂AlO₉ and CsCa₂Nb₂FeO₉²

	$CsCa2Nb2AIO9$		$CsCa2Nb2FeO9$			
hkl	$d_{obs}(\text{Å})$	$d_{cal}(\AA)$	$\rm I_{obs}$	$d_{obs}(\text{Å})$	$d_{cal}(A)$	\mathbf{I}_{obs}
001	15.24	15.11	3	15.11	15.14	5
100	3.867	3.873	13	3.883	3.876	15
004	3.770	3.778	38	3.778	3.785	100
102	3.447	3.446	29	3.447	3.450	13
103	3.069	3.070	100	3.079	3.074	45
005	3.023	3.022	7	3.023	3.028	20
110	2.743	2.738	54	2.743	2.740	43
104	2.710	2.704	22		2.708	
006	2.518	2.518	2	2.516	2.523	5
114	2.217	2.217	4	2.217	2.220	3
007	2.159	2.159	6	2.161	2.163	15
106	2.110	2.111	5	2.113	2.115	4
115	2.032	2.029	5		2.032	
200	1.937	1.937	26	1.937	1.938	18
201	1.922	1.920	6		1.922	
008		1.889			1.893	
	1.886		19	1.888		18
107)		1.885			1.889	
116	1.852	1.854	4	1.855	1.856	3
204)		1.723			1.725	
	1.723		11	1.723		7
211		1.720			1.722	
117	1.692	1.695	4	1.697	1.698	3
213	1.639	1.638	20	1.639	1.639	11
214	1.572	1.574	5	1.576	1.576	7
118	1.555	1.555	$\overline{2}$		1.557	
0011		1.374			1.376	
	1.370		4	1.370		5
220		1.369			1.370	
208		1.352			1.354	
	1.352		4	1.352		5
217		1.351			1.353	

 $a_a = 3.873(5)$; $c = 15.10(2)$ Å. $a = 3.876(8)$; $c = 15.14(3)$ Å.

Table 2. Lattice Parameters of $ACa_2Nb_{3-x}M_xO_{10-x}$ ($0 \le x \le$ 1.0) $(A = Rb, Cs; M = Al, Fe)$ and $KCa₂Nb₂FeO₉$

compound	a (Å)	c(A)
$CsCa2Nb3O10$	3.873(3)	15.08(1)
$CsCa2Nb2.75Al0.25O9.75$	3.866(3)	15.09(1)
$CsCa2Nb2.50Al0.50O9.50$	3.875(4)	15.13(2)
$CsCa2Nb2.25Al0.75O9.25$	3.873(5)	15.11(2)
$CsCa2Nb2AIO9$	3.873(5)	15.10(2)
$CsCa2Nb2.50Fe0.50O9.50$	3.875(5)	15.06(2)
$CsCa2Nb2FeO9$	3.876(8)	15.14(3)
$RbCa2Nb2AIO9$	3.864(5)	14.94(2)
RbCa ₂ Nb ₂ FeO ₉	3.885(7)	14.92(3)
KCa ₂ Nb ₂ FeO ₉ ^o	3.932(4)	

^aCubic perovskite structure.

 $HCa₂Nb₃O₁₀$; the latter is a solid Bronsted acid exhibiting intracrystalline reactivity and intercalation behavior similar to clay minerals.^{11,13b} We anticipated that layered $ACa_2Nb_{3-x}M_xO_{10-x}$ also would exhibit a similar reactivity. Accordingly, we could readily prepare protonated derivatives of $ACa_2Nb_{3-x}M_xO_{10-x}$ by ion exchange in aqueous HN03. Thermogravimetric analyses (Figure **2,** Table 3) showed that the protonated derivatives were all hydrated, containing 0.6-1.4 molecules of water/formula unit of the oxide; the water molecules dehydrated around $80-100$ °C. EDX analysis of the protonated materials revealed that the alkali ion was completely exchanged out and that the Ca:Nb:M ratio was not altered during the ion exchange. X-ray powder patterns (Figure 3) showed that the protonated materials were all isostructural with $HCa₂Nb₃O₁₀$ and $HCa_2Nb_3O_{10}.1.5H_2O,$ ^{13a} retaining the tetragonal structures of the parent materials (Table 3).

The protonated materials, $HCa_2Nb_{3-x}M_xO_{10-x}$, are solid Bronsted acids, as is the parent $HCa_2Nb_3O_{10}$,^{13b} readily

Figure 2. Thermogravimetric curves of (a) $HCa_2Nb_2AlO_9\cdot 0.9H_2O$, (b) $HCa_2Nb_2AlO_9\cdot1.4H_2O$, (c) $(n-C_6H_{13}NH_3)_{0.6}H_{0.4}Ca_2Nb_2AlO_9$ (obtained from $HCa_2Nb_2AlO_9 \cdot 0.9H_2O$), (d) $(n-C_6H_{13}NH_3)_{0.8}H_{0.2}$ - $Ca_2Nb_2AlO_9$ (obtained from $HCa_2Nb_2AlO_9$ -1.4 H_2O), and (e) C_6H_5 - $NH_{30.5}H_{0.5}Ca₂Nb₂AlO₉$. Sample (a) was obtained by ionexchange of as-prepared CsCa2NbzAlOe; sample (b) **was** obtained by ion-exchange of CsCazNbzAl09 annealed at **1000-950** "C for 4 weeks.

Table 3. Lattice Parameters of $\text{HCa}_2\text{Nb}_{3-x}\text{M}_x\text{O}_{10-x}$ ($0 \le x \le$ **1.0)** (M = Al, Fe) and Their Hydrates

compound	a (Å)	c(A)
$HCa2Nb3O10·1.5H2O$	3.854(4)	16.23(2)
$HCa2Nb3O10$	3.850(6)	14.38(3)
$HCa2Nb2.75Al0.25O9.75·1.1H2O$	3.858(4)	16.27(2)
$HCa_2Nb_2.75Al_0.25O_9.75$	3.863(6)	14.43(2)
$HCa_2Nb_{2.50}Al_{0.50}O_{9.50}.1.0H_2O$	3.856(4)	16.20(2)
$HCa2Nb2.50Al0.50O9.50$	3.859(7)	14.47(4)
$HCa2Nb2.25Al0.75O9.25·1.0H2O$	3.856(4)	16.26(2)
$HCa2Nb2.25Al0.75O9.25$	3.865(6)	14.42(5)
$HCa2Nb2AIO9·0.9H2Oa$	3.857(5)	16.22(2)
$HCa2Nb2AlO9·1.4H2Ob$	3.866(4)	16.27(3)
$HCa_2Nb_2AlO_9$	3.857(5)	14.41(2)
$HCa_2Nb_{2.75}Fe_{0.25}O_{9.75}.1.1H_2O$	3.857(6)	16.27(3)
$HCa2Nb2.75Fe0.25O9.75$	3.862(8)	14.47(3)
$HCa2Nb2.50Fe0.50O9.50·1.1H2O$	3.853(6)	16.22(3)
$HCa_2Nb_{2.50}Fe_{0.50}O_{9.50}$	3.864(5)	14.42(2)
$HCa2Nb2.25Fe0.75O9.25·1.0H2O$	3.871(6)	16.26(5)
HCa ₂ Nb _{2.25} Fe _{0.75} O _{9.25}	3.871(7)	14.42(7)
$HCa2Nb2FeO9·0.6H2O$	3.886(4)	16.25(5)
$HCa2Nb2FeO9$	3.885(7)	14.43(4)

^a Sample obtained by ion exchange of as-prepared CsCa₂Nb₂AlO₉. ^{*b*} Sample obtained by ion exchange of CsCa₂Nb₂AlO₉ annealed at 1000-950 °C for 4 weeks.

Table **4.** Composition and Lattice Parameters of n-Hexylamine Intercalation Compounds of $\text{HCa}_2\text{Nb}_{3-x}\text{M}_x\text{O}_{10-x}$ ($0 \le x \le 1.0$) ($\text{M} = \text{Al}$, Fe)

	amine		lattice parameters (A)	
host	content	α	c	
$HCa_2Nb_3O_{10}$	1.00	3.856(4)	28.36(2)	
$HCa2Nb2.75Al0.25O9.75$	0.80	3.860(6)	28.18(2)	
$HCa2Nb2.50Al0.50O9.50$	0.75	3.858(4)	28.68(5)	
$HCa_2Nb_2.25Al_0.75O_9.25$	0.70	3.866(7)	28.60(7)	
$HCa2Nb2AIO9$ ^e	0.60	3.851(7)	28,24(6)	
$HCa_2Nb_2AlO_9b$	0.80	3.862(4)	28.48(5)	
$HCa2Nb2.50Fe0.50O9.50$	0.76	3.870(5)	28.39(7)	
$HCa2Nb2.25Fe0.75O9.25$	0.70	3.885(6)	28,24(8)	
$HCa2Nb2FeO9$	0.60	3.880(7)	28.28(6)	

^a Sample obtained by ion exchange of as-prepared CsCa₂Nb₂AlO₉. Alog. Sample obtained by ion exchange of CsCa₂Nb₂AlO₉ annealed at 1000-950 "C for 4 weeks.

intercalating n -alkylamines to form n -alkylammonium derivatives, $(n-C_nH_{2n+1}NH_3)_zH_{1-z} [Ca_2Nb_{3-x}M_xO_{10-x}].$ In Figure 4, we show the X-ray diffraction patterns of a few typical intercalation compounds and in Tables 4 and 5, we list the composition and lattice parameters of all the

Table 5. Composition and Lattice Parameters of Intercalation Compounds of HCa2Nb:MOp (M = **Al, Fe)**

	$HCa2Nb2AIO9$		$HCa2Nb2FeO9$			
amine	intercalated	lattice parameters (A)		intercalated	lattice parameters (Å)	
	amine content	α	C	amine content	a	c
<i>n</i> -hexylamine	0.60	3.851(7)	28.24(6)	0.60	3.880(7)	28.28(6)
n -heptylamine	0.60	3.860(7)	30.39(4)	0.50	3.878(6)	30.50(4)
n -octylamine	0.60	3.859(5)	31.86(6)	0.50	3.886(5)	31.75(4)
n -nonylamine	0.60	3.856(6)	33.30(7)	0.50	3.887(6)	33.26(5)
n -decylamine	0.62	3.862(4)	34.61(5)	0.50	3.887(4)	34.72(4)
<i>n</i> -dodecylamine	0.58	3.860(5)	44.75(5)	0.50	3.887(7)	44.80(6)
n-dodecylamine ^a	0.50	3.861(4)	37.90(5)	0.50	3.885(4)	37.94(7)
n -hexadecylamine	0.63	3.857(6)	52.89(7)	0.60	3.886(4)	52.94(6)
n -hexadecylamine ^a	0.60	3.857(5)	44.63(4)	0.60	3.880(6)	44.65(4)
n-octadecylamine	0.50	3.855(7)	57.42(6)	0.44	3.879(7)	57.52(4)
pyridine	0.30	3.851(6)	18.39(7)	0.25	3.878(7)	18.41(7)
aniline	0.50	3.87(5)	25.42(6)	0.50	3.880(6)	25.46(7)

^aSamples annealed around 100 OC.

Figure 3. X-ray powder diffraction patterns of HCa₂Nb_{3-x}M_xO_{10-x} and their hydrates: (a) $HCa₂Nb₂AlO₉$, 1.4H₂O, (b) $HCa₂Nb₂AlO₉$ (c) $\text{HCa}_2\text{Nb}_2\text{FeO}_9$ -0.6H₂O, and (d) $\text{HCa}_2\text{Nb}_2\text{FeO}_9$.

intercalation compounds of $HCa_2Nb_{3-x}M_xO_{10-x}$. Besides *n*-alkylamines, we could also intercalate pyridine (pK_a = 5.25) and aniline ($pK_a = 4.63$) in $HCa_2Nb_2MO_9$, revealing that the Bronsted acidity of these materials is nearly the same as $HCa₂Nb₃O₁₀$. The latter intercalates pyridine but not 3-bromopyridine ($pK_a = 2.8$).^{13b} Interestingly, we could polymerize the monomer aniline intercalated into $HCa₂Nb₂MO₉$ by oxidation¹⁷ with $(NH₄)₂S₂O₈$ giving novel polyaniline/ $Ca₂Nb₂MO₉$ composites.¹⁸

The *n*-alkylamine intercalation compounds of HCa₂- $Nb_{3-x}M_xO_{10-x}$ show large expansions of the c-parameter (Tables 4 and **51,** the values being nearly the same as those of $HCa_2Nb_3O_{10}$ ^{13b} Accordingly, a plot of the *c* parameters of the intercalation compounds of $HCa_2Nb_2MO_9$ (M = Al, Fe) against the number of carbon atoms in the n -

Figure 4. X-ray powder diffraction patterns of typical intercalation compounds of $\text{HCa}_2\text{Nb}_{3-x}\text{M}_x\text{O}_{10-x}$: (a) $(n-\text{C}_6\text{H}_{13}\text{NH}_3)_{0.75}$ $H_{0.25}Ca_2Nb_{2.5}Al_{0.5}O_{9.5}$, (b) $n-C_{10}H_{21}NH_3)_{0.62}H_{0.38}Ca_2Nb_2AlO_{9}$, (c) $(n-C_{12}H_{25}NH_3)_{0.50}H_{0.50}Ca_2Nb_2FeO_9$, and (d) $(C_5H_5NH)_{0.25}H_{0.75}Ca_2$ -Two theta(degree), Cu K_x

NbzFeOg.

alkylamines (Figure 5) shows two linear regions, one for C_6-C_{16} amines and the other for $C_{12}-C_{18}$ amines. The alkyl chain orientation angles, α , derived from the slopes of the plots are 39.6° and 58° for the two regions. The corresponding angles are 40.5° and 62.3° for the n-alkylamine intercalation compounds^{13b} of HCa₂Nb₃O₁₀. The results clearly show that the Bronsted acidity and intercalation behavior of $\text{HCa}_2\text{Nb}_{3-x}\text{M}_x\text{O}_{10-x}$ members closely resembles the behavior of $HCa_2Nb_3O_{10}$. There is however one significant difference, namely the quantity of the amine intercalated. The data given in Tables 4 and 5 reveal that the quantity of amine intercalated in $HCa_2Nb_{3-x}M_xO_{10-x}$ decreases with *x* and that the average amine content of

⁽¹⁷⁾ Bissessur, R.; DeGroot, D. C.; Schindler, J. L.; Kannewurf, C. R.; (18) Gopalakrishnan, J.; Uma, S., to be published. Kanatzidis, M. G. *J. Chem. SOC., Chem. Commun.* **1993,687.**

ā *0 (0)* I $\frac{6}{2}$ $\frac{216}{218}$ g *0* (b) 002 2110 $\frac{1}{2}$ Relative Intensity - *0* (c) \mathbb{R} $\overline{5}$ $\frac{9!}{5}$ yor 500 2110 as
Doc $\overline{12}$,ት
5 *0* (d) I I I I I L 10 20 **30** *40* 50 **6(**

Figure 5. Plots of *c* parameter versus the number of carbon atoms in (a) $(n-C_nH_{2n+1}NH_3)_zH_{1-z}Ca_2Nb_2AlO_9$ and (b) $(n-C_nH_{2n+1} NH₃$ _z $H_{1-z}Ca₂Nb₂FeO₉.$

HCazNbzMOg intercalates is around 0.6 mol of amine/ formula unit of the host solid. $HCa₂Nb₃O₁₀$, on the other hand, takes up 1 mol of amine/formula unit of the host solid,13b corresponding to the transformation of **all** the interlayer protons to n-alkylammonium ions.

The intercalation of less than 1 mol of amine/formula unit of the host most likely implies that, unlike in HCa₂- $Nb₃O₁₀$, all the interlayer protons of $HCa₂Nb₂MO₉$ (M = Al, Fe) do not have the same acidity. The differential acidity of the protons in $HCa₂Nb₂MO₉$ would in turn imply that the Nb and M atoms (as well **as** the oxygen vacancies) in the perovskite slabs are not ordered. Assuming a statistical distribution of Nb and M atoms in the tripleperovskite slabs, $[Ca_2Nb_2MO_9]$, one would expect that Nb atoms occupy two-thirds of the octahedral sites and A1 atoms, one-third of the octahedral sites in every sheet. The oxygen vacancies are most likely distributed around the M atoms converting their octahedra into square pyramids. It is possible to visualize several models for the disordered structure of ACa₂Nb₂MO₉. Two such models, which are speculative, are shown in Figure 6a,b.

The implication of such a disordered structure toward the acidity of $HCa₂Nb₂MO₉$ is that there are three different kinds of protons in the interlayer region, viz., NbO...H... ONb (I) , NbO \cdots H \cdots OM (II) , and MO \cdots H \cdots OM (III) , their relative proportion being approximately **44.5** % , 44.5 % , and 11 % , respectively. Presumably, the acid strength of these sites would vary in the order $I > II > III$. Intercalation of about 0.50-0.60 mol of amine in $HCa₂Nb₂MO₉$ (Table *5)* is qualitatively in agreement with the above model, indicating that the most acidic sites I and part of acid sites I1 are probably involved in intercalation of n-alkylamines.

As mentioned in the Introduction, the primary motivation for the present work was to prepare anion-vacancy ordered layered perovskites of the type $ACa_2Nb_2MO_9$ (M = Al, Fe). Since the materials of this composition prepared at 1100-1200 "C turned out to be disordered, containing most likely a statistical distribution of Nb/M atoms as well as oxygen vacancies in the perovskite slabs, we explored the possibility of ordering the atoms/vacancies by annealing the samples for long periods. By trial and error, we found that ordering occurs on annealing the asprepared $CsCa₂Nb₂AlO₉$ at 1000-950 °C. A sample of CsCazNbzAlOg annealed for **4** weeks yielded a HCazNbz-AlO₉ that intercalated 0.80 mol of *n*-hexylamine/mol of the solid (Table **4).** More importantly, another sample of $CsCa₂Nb₂AIO₉ annealed for 8 weeks at 1000 °C and slowly$ cooled (1 \degree C/min) to 600 \degree C yielded a HCa₂Nb₂AlO₉ that intercalated ~ 0.90 mol of *n*-hexylamine/mol of the oxide.

OA oca eNb/AI o *0 0* **Vacancy**

Figure 6. Possible models for the structure of $ACa_2Nb_2AlO_9$ (A = Rb, Cs): (a) and (b) disordered structures for as-prepared samples; (c) ordered structure for sample annealed for long time. In (d), the structure of $ACa_2Nb_3O_{10}$ is shown for comparison.

Figure 7. ²⁷Al NMR spectra of (a) CsCa₂Nb₂AlO₉ prepared at 1150 "C and (b) CsCazNb2AlO9 annealed at 1000-950 "C for **8** weeks.

Accordingly, we believe that, on long-annealing, CsCaz-NbzAlO9 orders into a structure consisting of octahedral (NbO_{6/2})-tetrahedral (AlO_{4/2})-octahedral (NbO_{6/2}) layer sequence in the $[Ca_2Nb_2AlO_9]$ slabs (Figure 6c). Such a structure would be a two-dimensional analog of the brownmillerite structure, in the same way as $ACa_2Nb_3O_{10}$ (Figure 6d) is a two-dimensional analog of the perovskite structure. A similar octahedral-tetrahedral-octahedral, brownmillerite-like, layered structure has recently been proposed for LaSraFezAlOg, and evidence toward such an ordering was indeed found for the composition, $\text{LaSr}_3(\text{Fe}_{0.8}$ - $\text{Al}_{0.2}$)₃O_{8.95}, from a single-crystal X-ray and neutron powder diffraction study.16 Confirmation of the ordered structure proposed for $ACa_2Nb_2AlO_9$ (A = Cs, H) in this work must await a crystal structure determination.

In an attempt to provide further support to the formation of an ordered $CsCa₂Nb₂AlO₉$ on annealing, we recorded 27Al NMR spectra of the as-prepared and longannealed samples. The spectrum of the as-prepared sample (Figure 7a) shows a single resonance with a chemical shift of \sim 3 ppm relative to Al(H₂O)₆³⁺. Such a resonance is characteristic of **octahedral/near-octahedral** coordination of Al(II1) in oxides.19-2l In contrast, the annealed sample shows a sharp resonance at 76 ppm that has grown at the expense of the resonance at 3 ppm (Figure 7b). The resonance at 76 ppm is most likely due to tetrahedrally²² coordinated Al(II1). 27Al NMR experiments therefore indicate that ordering of Al(II1) indeed occurs in the longannealed samples of CsCazNb2AlOg giving tetrahedral

coordination to AUIII) and thus supporting the ordered structure suggested in Figure 6c.

In summary, we have shown that it is possible to substitute Al(III)/Fe(III) for Nb(V) in $ACa_2Nb_3O_{10}$ (A = In summary, we have shown that it is possible to substitute Al(III)/Fe(III) for Nb(V) in $ACa_2Nb_3O_{10}$ (A = Rb, Cs) giving $ACa_2Nb_{3-x}M_xO_{10-x}$ ($0 < x \le 1.0$) that retain the layered structure of the parent materials. Interlayer A cations in the **Al(III)/Fe(III)-substituted** materials are readily exchanged with protons in aqueous $HNO₃$ to give the corresponding protonated derivatives, $HCa₂Nb_{3-x}$. M_xO_{10-x} . The latter are solid Bronsted acids intercalating n-alkylamines and aniline. From the quantity of *n*alkylamine intercalated into the $x = 1$ member, HCa₂-NbzMO9, we inferred that the oxygen vacancies as well **as** the Nb and M atoms are not ordered in the as-prepared samples. On annealing the as-prepared $CsCa₂Nb₂AlO₉$ for long periods, ordering seems to occur to give rise to octahedral (NbO6)-tetrahedral (AlO4)-octahedral (NbO6) layer sequence, reminiscent of the brownmillerite structure.

Acknowledgment. We thank Professor C. N. R. Rao for valuable encouragement and support. **Our** thanks are **also** due to Mr. A. R. Raju for recording the EDX spectra and the Department of Science and Technology, government of India, for financial support of this work. We **also** thank Mr. P. T. Wilson, Sophisticated Instruments Facility of this Institute, for recording the 27Al NMR spectra.

⁽¹⁹⁾ Pinnavaia, T. J.; **Tzou, MA; Landau, S. D.; Raythata, R. H.** *J. Mol.* **Catal. 1984, 27, 195.**

⁽²⁰⁾ Taulelle, F.; Loiseau, T.; Maquet, J.; **Livage,** J.; **Ferey, G.** *J. Solid* **(21) Dupree, R.; Lewis, M. H.; Smith,** M. **E.** *J. Appl. Crystallogr. State Chem.* **1993,105,191.**

⁽²²⁾ Miiller, D.; Gesener, W.; Samoson, A.; Lippmaa, E.; Scheler, G. 1988,21, 109.

J. Chem. SOC., Dalton. Trans. **1986, 1277.**